Bild, Simulation, Text

Landesmuseum Karlsruhe,

Tut Anch Amun - ein virtueller Ausstellungsrundgang - Animierter Rundgang durch die Tut Anch Amun-Ausstellung - Karlsruhe 2003

Diese interaktive Seite bietet einen virtuellen Rundgang durch die Ausstellung "Mythos Tut Anch Amun" in Karlsruhe von 2002 bis 2003. Durch Klick gelangen die Besucher zu Ansichten von Grabräumen, Sammlerobjekten des 18. und 19. Jahrhunderts, die die Ägyptenbegeisterung dokumentieren, bis hin zur Tut-Anch-Amun-Manie der 60er Jahre des 20. Jahrhunderts. 360° Ansichten von Ausstellungsstücken runden den virtuellen Rundgang ab. Von der Hauptseite ("zurück"-Link) aus kann auch ein Bericht über die Ausgrabungsarbeiten erreicht werden. Ebenso werden dort die einzelnen Ausstellungsobjekte kommentiert.

Bild, Simulation, Text, Video, Website

Goethe-Institut e.V.

Mein Weg nach Deutschland

Videos und Sprachübungen sowie praktische Informationen über das Leben in Deutschland in 16 Sprachen für Lerner mit Grundkenntnissen Deutsch ab Niveaustufe A1

Bild, Text

Landesanstalt für Medien Nordrhein-Westfalen (LfM), Medienpädagogischer Forschungsverbund Südwest

Handysektor: Handysektor: Das Netz vergißt nichts!

Der Flyer behandelt den oft leichtsinnigen Umgang von Jugendlichen und Kindern mit Fotos, Party-Pics und Videos. Schnell sind Bilder und Videos in Sozialen Netzwerken veröffentlicht, werden von anderen kommentiert, weitergeleitet, bearbeitet und aufs Handy geladen. Aus einem Partyspaß kann so schnell eine dauerhafte Rufschädigung werden, denn DAS NETZ VERGISST NICHTS! Der Flyer richtet sich direkt an Jugendliche, bietet aber auch Pädagog(inn)en die Möglichkeit, mit den Jugendlichen über Datenschutz, üble Nachrede und das Recht am eigenen Bild zu diskutieren.

Bild, Text, Website

Logo creative commons

Saferinternet.at/Österreichisches Institut für angewandte Telekommunikation

Unterrichtsmaterial: Das Handy in der Schule

Ein Leben ohne Handy? Das ist für viele Menschen undenkbar. Auf Kinder und Jugendliche trifft das besonders zu. Bei den Jugendlichen sind Smartphones, also besonders funktionsreiche Handys, hoch im Kurs - um mit anderen zu chatten, Spiele zu spielen, Infos zu recherchieren oder Fotos zu schießen. Die Zeiten, wo mit dem Handy “nur” telefoniert oder gesimst wird, sind schon lange vorbei. Mit dem Smartphone ist auch das Internet in der Hosentasche in die Schule eingezogen. Es kann kaum kontrolliert werden und steht den Kindern potenziell immer zur Verfügung. Das bringt einige Veränderungen.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 1 | A.22.03

Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man die Steigungen beider Funktionen in diesem Punkt (über die erste Ableitung). Danach kann man den Winkel alpha mit der Schnittwinkelformel bestimmen: tan(alpha)=(m2-m1)/(1+m1*m2).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen, Beispiel 1 | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 2 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. (Es gilt also: f(x)=g(x) und f'(x)=g'(x)). Zweitens: beide Funktionen stehen senkrecht aufeinander (stehen also orthogonal aufeinander bzw. bilden einen 90°-Winkel). In diesem Fall sind beide y-Werte gleich und beide Steigungen sind negativ reziprok zueinander (=negativer Kehrwert). (Es gilt also: f(x)=g(x) und f'(x)*g'(x)=-1).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 6 | A.27.04

Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.


Dieses Material ist Teil einer Sammlung